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A valence-bond (VB)/coherent-states (CS) approach to the charge equilibration (CE) model for diatomic
molecules is presented in this work (VB part) and its sequel (CS part). By emphasizing theoretical aspects,
this approach obtains the classical-electrostatics CE model from a quantum VB model in conjunction with
the CS theory. For the VB part, a VB generalized CE (VB/GCE) model, which contains the CE model as a
subcase, is derived from a two-electron, three-state VB model via the sequential application of seven
approximations. Unlike its CE subcase, the VB/GCE model provides a satisfactory charge-transfer description
at dissociation as illustrated with HF(g) and other molecules. Through the previous derivation, CE charges
and CE Coulomb interactions are elucidated in terms of VB Mulliken charges and VB atomic interactions,
respectively. Modifications in the above derivation can generate a family of related VB/GCE models that
includes the aforesaid VB/GCE model. Despite their classical appearance, all of the VB/GCE and CE models
involve VB wave functions corresponding to ground and first-excited states. Moreover, all of the VB/GCE
and CE energy and charge optimizations are proven to be equivalent to the variational eigenvector equation
procedures of the underlying VB models. The quantum-mechanics/classical-electrostatics connection implicit
in this work is further elaborated by means of VB CS sets in the sequel. The VB/CS treatment of polyatomic
molecules and additional tests of the present approach will be reported in later papers in this series.

1. Introduction

A main endeavor in contemporary electronic structure theory is
the simulation of large systems of biochemical, biophysical, and
materials science interests. However, even with current computer
technology, full quantum-mechanical treatments of such systems
remain unfeasible. That difficulty has spurred the development of
several methodologies that utilize less-demanding classical-
mechanics1 and/or classical-electrostatics1,2 descriptions. Depending
upon the required level of accuracy, those classical descriptions
can be extended to the entire system1,2 or be restricted to a
peripheral region via a quantum/classical (Q/C) partition.3-7 In that
scheme, the system is divided into a central region that encloses
quantum phenomena and a background region that is mostly devoid
of quantum effects; electrons in the first region are represented
explicitly by a wave function or a quantum density; conversely,
electrons in the second region (or the entire system if permissible)
are represented implicitly by models that circumvent the use of
wave functions or quantum densities.

Among several classical methodologies, the charge equilibration
(CE)2 model (also known as fluctuating charge,8 chemical potential
equilibration,9 or electronegativity equalization9 model) represents
the atoms in a molecule as a set of interacting charges; in that
electrostatic picture, the concepts of electronegativity10 and hard-
ness11 play prominent roles in defining the molecule energy and
in describing charge-transfer reactions. In the subsequent discussion,
the CE model will be briefly reviewed within the context of this
investigation, but more detailed reviews can be found elsewhere.12,13

The traditional approach to the CE model involved its derivation
from the quantum theory via phenomenological or density-
functional-theory (DFT)12 arguments that have provided different
versions of the model. Prominent CE derivations include those by

Rappé and Goddard2 (phenomenological) and by Itskowitz and
Berkowitz14 (DFT-based), inter alia.12,15 The source of all of those
derivations is the seminal analysis by Iczokowsky and Margrave16

of the variation of the energy of an isolated atom as a function of
its charge. From that analysis, it is possible to approximate the
energy EA

CE(QA) of an atom A as a function of its charge QA

(-1 e QA e + 1) with a quadratic interpolating polynomial17,18

from the energies of three charged species of that atom: EA+, EA0,
and EA-,

EA
CE )EA0 +
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where �A
0 and ηA

0 are the Mulliken electronegativity10 and the
absolute hardness11 of atom A, respectively. In eq 1, �A

0 and ηA
0

satisfy
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where IPA ) EA+ - EA0 and EAA ) EA0 - EA- are the ionization
potential and electron affinity of atom A, respectively. In eq 2,
the Mulliken electronegativity, �A

0 , is identified as the negative
of the chemical potential of the uncharged atom, µA

0, since in
general µA ) -∂EA/∂qA.12,19 The CE energy EMolecule

CE for a
molecular system is the extension of the single-atom CE energy
EA

CE to a set of atoms forming a molecule. For a system of NAtom

atoms having atomic charges: {QA, QB,... QNAtom
} and carrying

atomic spatial orbitals: {φA, φB,... φNAtom
}, the Itskowitz-Berkowitz

CE energy EMolecule
CE is as follows:14
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EMolecule
CE (QA, QB, ... QNAtom

)) ∑
A

NAtom

(EA0 + �A*QA + ηA
0 QA

2)+

∑
A<B

NAtom

JAB
CEQAQB (3)

where JAB
CE(RAB) ) JAB(RAB) ) (φAφA|φBφB) is the Coulomb

integral of the atomic orbitals on atoms A and B at separation
RAB, and �A* is the environment-perturbed Mulliken electrone-
gativity14 of atom A

�A* ) �A
0 - ∑

B*A

NAtoms ∫ [V̂B(r1)+∫ FB(r2)

r12
dr2]fA(r1)dr1 (4)

where fA(r1) is the Fukui function20 of that atom (fA(r1) ≈
FA

HOMO(r1) ) |φA(r1)|2 12), and V̂B(r1) and FB(r2) are the nuclear
potentials and charge densities of all the atoms B * A. Equation
3 can be interpreted in electrostatic terms: its first sum combines
the CE energies EA

CE(QA) of the individual atoms, now with an
environment-perturbed electronegativity, �A*, and its second sum
contains the Coulomb interactions JAB

CEQAQB between all pairs
of atomic charges QA and QB. In the latter, JAB

CE(RAB) acts as a
modulating factor to satisfy boundary conditions. If atoms A
and B are well separated (RAB f ∞) then JAB

CE (RAB) f 1/RAB

and the Coulomb interaction becomes the ordinary Coulomb
law. Conversely, if those atoms are close then JAB

CE (RAB) * 1/RAB

and provides a shielded Coulomb law that avoids an unphysical
singularity at RAB ) 0 because JAB

CE is finite therein. Notice that
the Rappé-Goddard2 CE energy expression can be obtained
from eq 3 if the electronegativity perturbation terms are
neglected (�A* ≈ �A

0 ).
The calculation of the optimal CE energy and charges is

achieved by applying the Sanderson Principle of Electronega-
tivity Equalization (SPEE)9 to the CE model; that application
explains the term “CE” as seen shortly. According to the SPEE,
if atoms combine to make a molecule while retaining their own
identities, then their individual CE chemical potentials µA )
-∂EMolecule

CE /∂QA must equalize to attain chemical equilibrium;
that condition leads to NAtom - 1 equilibrium conditions: µA )
µB ) ... ) µNAtom

that along with the conservation of the total
charge, QTotal ) ∑A

NAtomQA, render a system of NAtom linear
equations for the NAtom optimal charges: QjA, Qj B,... Qj NAtom

2. In
the case of neutral diatomic molecules AB, the CE energy EAB

CE

from eq 3 can be rewritten in an abridged form that incorporates
the conservation of the total charge: QTotal ) QA + QB ) 0 via
QA ) -QB

EAB
CE(QA))ACE +BCEQA +CCEQA

2 (5)

where

ACE )EA0 +EB0; BCE ) �A* - �B*; CCE ) ηA
0 + ηB

0 - JAB
CE

(6)

In that case, it is easy to prove that the SPEE optimal charge
QjA ) -Qj B corresponds to the condition dEAB

CE(QjA)/dQA ) 0 so
that

QjA )-Qj B )- BCE

2CCE
)

�B* - �A*

2[ηA
0 + ηB

0 - JAB
CE(RAB)]

(7)

Equation 7 portrays the intramolecular charge transfer leading
to the optimal charges as a reaction driven by the electronega-
tivity difference, �B* - �A*, in accordance with the intuitive notion
of electronegativity.

Furnished with adequate parametrizations, the CE model can
satisfactorily predict atomic charges in large molecules near their
equilibrium geometries at low computational cost.2,14 However,
despite those advantages, the CE model exhibits significant
deficiencies that have hindered its further development and
widespread application.13 While a complete account of all those
deficiencies is given elsewhere,13 this investigation will only address
the most primary problems in the CE model. Some of the CE
deficiencies manifest as theoretical uncertainties in the CE expres-
sions. For instance, a characterization of the CE atomic charges in
terms of standard theoretical definitions of atomic charges (e.g.,
via Mulliken population analysis,21,22 electrostatic potential fitting,23-25

etc.) is missing; similarly, the adoption of JAB
CE(RAB) as a shielding

factor in some CE derivations2 is obviously ad-hoc because it has
not been rigorously derived from the interatomic interactions.
However, a more serious deficiency involves the application of
the CE equations to bond-breaking processes. It is well-known that
the gas-phase dissociation of a ground-state diatomic molecule
AB(g) always yields its uncharged atoms: A(g)

0 + B(g)
0 rather than

its ions: A(g)
+ + B(g)

- , A(g)
- + B(g)

+ , etc., because in practice IPA/B -
EAB/A > 0. However, eq 7 predicts for QjA ()-QjB) at dissociation,

lim
RABf∞

QjA ) lim
RABf∞

-Qj B )
�B

0 - �A
0

2(ηA
0 + ηB

0 )
(8)

a quantity that is never zero (and even unphysical) in a
heteronuclear molecule, where �B

0 * �A
0 (For more details about

the dissociation problem, see the discussion of Figures 1 and 2
in Section 2.B). Berkowitz26 ingeniously corrected that wrong
asymptotic behavior by enforcing the chemical equilibrium
condition µA ) µB at all bond separations (The original SPEE
enforces that condition only when all the atoms are closely
bonded); however, the resulting equations26 do not describe
charge transfers as driven by electronegativity differences as
eq 7 does. Contrastingly, a solution to the above asymptotic
problem that still retains that conceptual electronegativity picture
is advanced below in Section 2.B (See also refs 27 and 28 for
other solutions in a similar spirit).

More recently, Morales and Martı́nez13,27 demonstrated that the
aforesaid deficiencies in the CE model partially stem from some

Figure 1. F atom charge in HF(g) as a function of the bond distance
(RHF) from two quantum methods: electrostatic potential (ESP)
fitting23-25 and Mulliken charges from generalized valence-bond (1/
2)36 [GVB(1/2)]/6-31G** calculations, and from three classical
methods: Goddard-Rappé CE2, eq 7, VB/GCE I and II, eq 36,
charges.
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heuristic assumptions employed in the traditional CE derivations.
More importantly, those authors also demonstrated that a less
heuristic, wave function-based approach to the CE model (i.e., an
approach neither phenomenological nor DFT-based) can contribute
to the solution of some CE deficiencies; that approach was based
on the valence bond (VB)29 theory. In that context, it was postulated
that the introduction of the atomic overlap into the linear coefficient
of the CE energy [cf., eq 34] may correct the CE dissociation
problem since that new coefficient could regulate the interatomic
charge transfers.27 That postulated energy expression, then named:
pairwise-electronegativity charge-constrained quadratic valence-
bond model 2 (PE-CC-QVB2),27 provided a satisfactory description
of charge transfers at dissociation in LiH(g)

27 and NaCl(g).28 Those
early efforts were the motivation of this investigation that, working
within a larger theoretical scope, now provide a rigorous derivation
of the postulated PE-CC-QVB2 model, among other findings. As
a result, a novel VB/Coherent-States (CS)30 approach to the CE
model is presented herein. As its name indicates, this VB/CS
approach combines for the first time two methodologies that have
been hitherto unrelated; the first methodology is the VB theory
that provides a localized electronic description to appropriately
embark upon the CE model;13,27 the second methodology is the
CS theory that provides a rigorous justification for the classical-
electrostatic features of the CE model as derived from the quantum
VB theory. Thus, a main theoretical contribution in this investiga-
tion is the finding of a connection between the quantum and the
classical-electrostatics features of the VB and CE descriptions,
respectively, via the CS theory. The latter is possible because the
novel VB CS sets involved in this approach comprise quantum
states that obey classical electrodynamics (i.e., they exhibit quasi-
classical behav-
ior30-32). In fact, with those quasi-classical VB CS sets, the CE
classical-electrostatics description of a molecule becomes analogous
to that of a molecular electric circuit. That Q/C connection is also
important to rigorously combine a CE-like model with a quantum
method in a Q/C hybrid.

In keeping with its dual nature, this VB/CS approach is
introduced in two papers, hereafter called Paper I (the present one)
and Paper II (its sequel), that successively deal with the VB (Paper
I) and the CS (Paper II) parts of this project. For presentation’s
sake, Papers I and II develop the VB/CS approach to the CE model
only for neutral diatomic molecules without a Q/C partition.
However, the proposed approach is not restricted to that diatomic
case. In fact, the VB/CS treatment of cases involving polyatomic
molecules and/or Q/C partitions will be presented in later papers
in this series. The VB part of the VB/CS approach is developed in
this, Paper I, as follows. In Section 2.A, a parent quantum VB
model to describe intramolecular charge transfers in a neutral
diatomic molecule is defined by a set of five rules. In Section 2.B,
a generalized CE model is derived from the previous VB model
by sequentially applying seven approximations; that generalized
CE model overcomes some of the discussed CE deficiencies
(imprecisely defined charges and Coulomb interactions, incorrect
dissociations) while containing the traditional CE model as a
subcase. The dissociation behavior of that generalized CE model
is analyzed for the cases of HF(g), LiH(g) and NaCl(g). In Section
2.C, a family of generalized CE models, including the previous
model, is derived in order to gain further insight into the relationship
between the VB and CE theories. That is completed in Section
2.D, where the equivalence between the energy and charge
optimization procedures of all the derived CE models and the
original VB eigenvector equations is demonstrated. The latter also
proves that all of the generalized and traditional CE models
implicitly involve VB wave functions despite their outwardly

classical appearance. Finally, in Section 3, the conclusions are
presented. The CS part of this VB/CS approach will be developed
in Paper II, directly from the results of Paper I. However, this Paper
I can be read independently from Paper II because it does not
depend upon the latter’s results. Therefore, a detailed discussion
on the CS theory is not presented herein but in Paper II. Paper II
will be submitted for publication soon.

2. Theory

A. The VB Model 3 for Neutral Diatomic Molecules. The
VB/CS approach to the CE model starts with a parent VB model.
The latter does not require the explicit treatment of all of the
electrons in a molecule but only a few of them that capture the
basic features of intramolecular charge transfers. The specific
details of the parent VB model depend upon the type of
molecule under description (diatomic, triatomic, polyatomic,
etc.) and are determined by a set of rules. For neutral diatomic
molecules, AB, that model is a three-state VB model for two
effective electrons hereafter called the VB Model 3. The rules
defining the VB Model 3 are:

• Rule I. Treat explicitly only one active valence electron
per atom: NA ) NB ) 1, so that the total number of effective
electrons is: Nel

eff ) NA + NB ) 2; then, consider the remaining
valence and core electrons inactive by being part of frozen cores
on the nuclear centers and rendering effective nuclear charges
ZA

eff and ZB
eff, ZA

eff + ZB
eff ) +2.

Rule I prescribes a drastic core approximation33 that seems
tolerable for alkali metal atoms because their chemistry is
dominated by their single ns1 valence electrons; however, that
approximation seems less acceptable for other types of atoms
because it merges most of the valence electrons with those at
the cores. Nonetheless, despite its crudeness, this core ap-
proximation effectively leads to the CE model as shown below.

• Rule II. Take the effective Hamiltonian Ĥeff
(3) for the two

effective electrons as the model Hamiltonian of molecule AB

Ĥeff
(3)(r1, r2; R)) Ĥ(r1)+ Ĥ(r2)+

1
r12

+
ZA

effZB
eff

R
(9)

with

Ĥ(ri)) T̂(ri)+ V̂A(ri)+ V̂B(ri);

T̂(ri))-1
2

∇i
2; V̂A/B(ri))-

ZA/B
eff

|RA/B - ri|
; i) 1, 2 (10)

where r1 and r2 are the positions of the effective electrons, RA

and RB the positions of the nuclei, r12 ) |r2 - r1| and R ) |RB

- RA| the separations between the electrons and the nuclei,
respectively, and T̂(ri) and V̂A/B(ri) the electronic kinetic energy
and nuclear potential operators, respectively. The symbol (3)
in Ĥeff

(3) and in subsequent expressions denotes the VB Model 3;
it is written between parentheses to avoid confusing it with
power exponents or superscripts.

• Rule III. Describe the two effective electrons in terms of a
minimum basis set consisting of two atomic spin-orbitals per
atom: {φA(r)R(s), φA(r)�(s)} and {φB(r)R(s), φB(r)�(s)}, where
φA/B(r) is a spatial atomic orbital, and R(s)/�(s) a one-electron
spin eigenfunction.

Those atomic spin-orbitals are nonorthogonal: SAB(R) )
〈φA|φB〉 ) 〈φjA|φjB〉 * 0, where SAB(R) is the atomic overlap at
separation R, and the no-overbar/overbar denotes a R/� spin
eigenfunction; notice that SAB(Rf ∞) ) 0. Those atomic spin-
orbitals will be considered as real functions. Examples of atomic
spin-orbitals adequate for the CE model are discussed in the
next section.
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• Rule IV. For the model two-electron molecule AB, determine
the covalent VB structure A-B and its corresponding VB state
Ψ1

(3):

Ψ1
(3) ) 1

√2(1+SAB
2)

(|φAφ̄B 〉 - |φ̄AφB 〉 ) (Covalent: A-B)

(11)

where | · · · 〉 denotes a Slater determinant: | · · · 〉 ) (Nel!)-1/2

det( · · · ) for an Nel-electron state.
• Rule V. Finally, generate the remaining VB structures and

states of the VB Model 3 by effecting all of the possible heterolytic
cleavages of the bond in the covalent VB structure A-B of Rule
IV; that gives rise to the additional VB structures and states: ionic
I A+ B-, Ψ2

(3); and ionic II A- B+, Ψ3
(3), respectively:

Ψ2
(3) ) |φBφ̄B〉 (Ionic I: A+B-);

Ψ3
(3) ) |φAφ̄A〉 (Ionic II: A-B+) (12)

Conceptually, the three VB structures from Rules IV and V contain
all of the possible rearrangements of the two effective electrons
over the atoms A and B: A-B, A+ B- and A- B+, from which
the CE charge transfers will be derived. The Rules I-V for
diatomic molecules have been presented in a systematic and abstract
way because in that form they can be easily extended to more
complex cases with polyatomic molecules. The resulting VB Model
3, representing an idealized two-electron, single-bonded molecule
without extra lone pairs and/or unpaired electrons, leads to the CE
description for any molecule AB, as shown below. This is so, even
if the actual electronic structure of that molecule (e.g., more than
two electrons, double or triple bonds, lone pairs, etc.) does not
correspond to that simplified representation. More realistic VB
models starting from covalent VB structures: AdB or AtB,
including lone pairs and/or unpaired electrons if appropriate, and
implying various ionic VB structures, lead to more sophisticated
forms of the CE model that will be analyzed in the future.

Given the Rules I-V, the VB Model 3 can be developed by
following usual VB prescriptions.29,34 A trial VB Model 3 wave
functionΨVB

(3) is:

ΨVB
(3) ) c1

(3)Ψ1
(3) + c2

(3)Ψ2
(3) + c3

(3)Ψ3
(3) (13)

where c1
(3), c2

(3) and c3
(3) are the VB variational coefficients that

are taken as real because a real atomic basis set is assumed.
The VB energy EVB

(3) and VB normalization condition of ΨVB
(3)

are as follows:

EVB
(3) ) 〈ΨVB

(3) |Ĥeff
(3)|ΨVB

(3) 〉) c1
(3)2H11

(3) + c2
(3)2H22

(3) + c3
(3)2H33

(3) +

2c1
(3)c2

(3)H12
(3) + 2c1

(3)c3
(3)H13

(3) + 2c2
(3)c3

(3)H23
(3);

1) 〈ΨVB
(3) |ΨVB

(3) 〉) c1
(3)2 + c2

(3)2 + c3
(3)2 + 2c1

(3)c2
(3)S12

(3)+

2c1
(3)c3

(3)S13
(3) + 2c2

(3)c3
(3)S23

(3) (14)

where Hij
(3)(R) ) 〈Ψi

(3)|Ĥeff
(3)|Ψj

(3)〉 and Sij
(3)(R) ) 〈Ψi

(3)|Ψj
(3)〉 are

the VB energy and the VB overlap matrix elements, respectively,
that are obtained via Löwdin Rules:29

H11
(3) ) 1

(1+ SAB
2)

[hAA + hBB + JAB +KAB +VAA
B +VBB

A +

2hAB
ABSAB +

ZA
effZB

eff(1+SAB
2)

R ]) 1

(1+ SAB
2)

[EA
0 +EB

0 +F11
(3)(R)];

H22
(3) ) 2hBB + JBB + 2VBB

A +
ZA

effZB
eff

R
)EA

++EB
-+F22

(3)(R);

H33
(3) ) 2hAA + JAA + 2VAA

B +
ZA

effZB
eff

R
)EA

-+EB
++F33

(3)(R);

H12
(3) ) 2

√2(1+SAB
2)

[hAB
AB + (hBB +VBB

A )SAB + JAB
BB +

ZA
effZB

effSAB

R ]
H13

(3) ) 2

√2(1+SAB
2)

[hAB
AB + (hAA +VAA

B )SAB + JAB
AA +

ZA
effZB

effSAB

R ]
H23

(3) ) 2hAB
ABSAB +KAB +

ZA
effZB

eff(1+SAB
2)

R
(15)

where the atomic matrix elements are as follows:

hAA ) 〈φA|T̂+ V̂A|φA〉;

hAB
AB ) 〈φA|T̂+ V̂A + V̂B|φB〉;

VAA
B ) 〈φA|V̂B|φA〉; JAA ) (φAφA|φAφA);

JAB
AA ) (φAφB|φAφA); KAB ) (φAφB|φBφA) (16)

with analogous expressions for hBB, VBB
A , JBB, and JAB

BB. In the present
description, an isolated atom A(B) can accommodate zero, one,
or two effective electrons and thus generates its successive charged
species with their corresponding wave functions: A+ (B+): |〉
(vacuum state, no electrons); A0 (B0): |φA〉 and |φjA〉 (|φB〉 and |φjB〉);
and A- (B-): |φAφjA〉(|φBφjB〉). Therefore, the energies: EA

+, EA
0 ,

EA
-, EB

+, EB
0 , and EB

- of the charged species in eq 15 are as
follows:

EA
+) 0; EB

+) 0; EA
0 ) 〈φA|T̂+ V̂A|φA〉) hAA;

EB
0 ) 〈φB|T̂+ V̂B|φB〉) hBB;

EA
-) 〈φAφA|Ĥeff

(3)|φAφA〉) 2hAA + JAA;

EB
-) 〈φBφB|Ĥeff

(3)|φBφB〉) 2hBB + JBB (17)

Then, the VB Model 3 ionization potential IPA ) EA
+ - EA

0 ,
electron affinity EAA ) EA

0 - EA
-, Mulliken electronegativity

�A
0, eq 2, and absolute hardness ηA

0, eq 2, for atom A are as
follows:

IPA )-hAA; EAA )-hAA - JAA;

�A
0 )-hAA - 1

2
JAA; ηA

0 ) 1
2

JAA (18)

with analogous expressions for atom B. In eq 15, Fii
(3)(R) are

interaction functions in terms of two-center matrix elements:
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F11
(3)(R)) JAB +KAB +VAA

B +VBB
A + 2hAB

ABSAB +

ZA
effZB

eff(1+ SAB
2 )

R
;

F22
(3)(R)) 2VBB

A +
ZA

effZB
eff

R
;

F33
(3)(R)) 2VAA

B +
ZA

effZB
eff

R
(19)

Those functions describe the interaction between the atomic
fragments. For instance, by setting ZA

eff ) ZB
eff ) +1 and the

asymptotic values of the atomic matrix elements when R f
Large: JAB f 1/R, VAA

B f -1/R, VBB
A f -1/R, KAB f 0 and

SAB f 0, the interaction functions Fii
(3)(R) become: F11

(3)(R) f 0
and F22

(3)(R) ) F33
(3)(R) f -1/R near dissociation. Those limits

are the Coulomb law interactions between the atomic fragments
in the three possible dissociations in the present model: A0/B0,
A+/B-, and A-/B+, respectively.

Finally, the VB overlap matrix elements are as follows:

S11
(3) ) S22

(3) ) S33
(3) ) 1; S12

(3) ) S13
(3) )

2SAB

√2(1+SAB
2)

; S23
(3) ) SAB

2

(20)

Since atomic charges are central to the CE model, attention
should also be paid to the charge descriptions in the VB Model
3. Various definitions of electron population analyses22,29 and
atomic charges22-25,29 exist but that by Mulliken21,22 is the most
useful herein. The VB Model 3 total (R + �) Mulliken
population requires the total density matrix P(3) ) (PAB

(3) ) of ΨVB
(3)

PA/B A/B
(3) ) [ c1

(3)2

(1+SAB
2)
+ 2c3/2

(3)2 +
4c1

(3)c3/2
(3)SAB

√2(1+SAB
2)];

PAB
(3) ) [ c1

(3)2SAB

(1+ SAB
2)
+

2c1
(3)(c2

(3) + c3
(3))

√2(1+SAB
2)

+ c2
(3)c3

(3)SAB] (21)

Then, the total Mulliken number of electrons NA
(Mull) () 2

-NB
(Mull)) and charge QA

(Mull)() -QB
(Mull)) on atom A are as

follows:21,22

NA
(Mull) ) ∑

C∈A
∑

D)A,B

PCD
(3) SDC

(3) ) c1
(3)2 + 2c3

(3)2 +
6c1

(3)c3
(3)SAB

√2(1+SAB
2)
+

2c1
(3)c2

(3)SAB

√2(1+ SAB
2)
+ 2c2

(3)c3
(3)SAB

2; QA
(Mull) ) ZA

eff -NA
(Mull) (22)

The standard VB procedure29,34 for the VB Model 3 involves
applying the linear variational principle34 to the variational
integral EVB

(3) /〈ΨVB
(3) |ΨVB

(3) 〉 to determine the optimal trial function
ΨVB

(3) ; that leads to the VB eigenvector equation29,34

( H11
(3) -Ei

(3) H12
(3) - S12

(3)Ei
(3) H13

(3) - S13
(3)Ei

(3)

H12
(3) - S12

(3)Ei
(3) H22

(3) -Ei
(3) H23

(3) - S23
(3)Ei

(3)

H13
(3) - S13

(3)Ei
(3) H23

(3) - S23
(3)Ei

(3) H33
(3) -Ei

(3) )(c1i
(3)

c2i
(3)

c3i
(3) )) 0;

i) 1, 2, 3 (23)

and associated secular equation that provide three eigenvectors/
eigenvalues:(c1i

(3), c2i
(3), c3i

(3))T /Ei
(3) corresponding to the ground

and first two excited states. From those solutions, it is easy to
corroborate that the VB Model 3 correctly describes the charge

transfers during the gas-phase dissociation of a ground-state
molecule AB. At Rf ∞, the matrix in eq 23 becomes diagonal
(cf., eqs 15 and 20) so that its asymptotic eigenvalues are as
follows: E1

(3) ) EA
0 + EB

0 , E2
(3) ) EA

+ +EB
- ) EA

0 + EB
0 + IPA -

EAB, and E3
(3) ) EA

- + EB
+ ) EA

0 + EB
0 + IPB - EAA, which

correspond to the VB wave functions: ΨVB 1
(3) ) Ψ1

(3), ΨVB 2
(3) )

Ψ2
(3), and ΨVB 3

(3) ) Ψ3
(3), which represent the fragmentations:

A(g)
0 + B(g)

0 , A(g)
+ + B(g)

- , and A(g)
- + B(g)

+ , respectively. Provided
with standard CE parametrizations,2,14 the VB Model 3 can
reproduce the experimental condition IPA/B - EAB/A > 0 so
that E1

(3) ) EA0B0 < both E2
(3) ) EA+B- and E3

(3) ) EA-B+, which
correctly favors the dissociation into uncharged species at the
ground state.

The three-state VB Model 3 is central to this investigation
but additional VB submodels are necessary in subsequent
discussions. Two of those submodels are the two-state VB
Models 2- and 2+ in terms of the VB-related functions {Ψ1

(2-),
Ψ2

(2-)} and {Ψ1
(2+), Ψ2

(2+)}, respectively,

Ψ1
(2-) )Ψ1

(2+) )Ψ1
(3); Ψ2

(2-) )
(Ψ2

(3) -Ψ3
(3))

√2(1-SAB
2)

;

Ψ2
(2+) )

(Ψ2
(3) +Ψ3

(3))

√2(1+SAB
2)

(24)

While Ψ1
(2-) and Ψ1

(2+) correspond to the VB covalent A-B
state Ψ1

(3), Ψ2
(2-), and Ψ2

(2+) do not correspond to any genuine
VB state because both mix the ionic I A+ B- Ψ2

(3) and ionic II
A- B+ VB Ψ3

(3) states; the latter implies that the VB Models
2- and 2+ are not VB models, strictly speaking. However,
those models will be termed “VB” because their states are
directly related to the genuine VB states of the VB Model 3,
eq 24. The energy and overlap matrix elements of the VB
Models 2- and 2+: Hij

(2()(R) and Sij
(2()(R), are also related to

their VB Model 3 equivalents. For instance, their VB overlap
matrix elements are as follows:

S11
(2() ) S11

(3) ) 1; S12
(2-) ) (S12

(3) - S13
(3))/√2(1- SAB

2)) 0;

S12
(2+) ) (S12

(3) + S13
(3))/√2(1+SAB

2)) 2SAB ⁄ (1+ SAB
2) (25)

Notice that the VB Model 2- is orthogonal.

B. The VB Generalized CE Model from the VB Model
3. The VB Model 3 is a minimal quantum method that can
provide a meaningful description of intramolecular charge
transfers; however, that model still differs from the targeted CE
model. For instance, the VB Model 3 energy, eq 14, is a function
of two independent VB coefficients (after normalization is
considered) that are obtained via the VB eigenvector eq 23;
contrastingly, the CE energy, eq 5, is a function of one
independent atomic charge QA (after conservation of total charge
is considered) that is obtained via the classical SPEE CE eq 7.
Despite those dissimilarities, a VB generalized CE model (VB/
GCE) can be derived from the VB Model 3 by sequentially
applying to the latter the approximations discussed below. Those
approximations are similar to well-known approximations used
in semiempirical methods33 and in CE models.13,27,35 In this
context, the aim of the prescribed approximations is to transform
the quantum description of the VB Model 3 into the classical-
electrostatics description of the CE and VB/GCE models. The
approximations are as follows:

• Approximation I. First, introduce a 2 × 2 charge matrix
q35:

6008 J. Phys. Chem. A, Vol. 113, No. 20, 2009 Morales



q ) (qAA qAB

qBA qBB
) (26)

where the charge variable element qCD (C, D ) A, B) is defined
as the amount of charge that atom C interchanges with atom
D; then, it follows that q is skew-symmetric because qCD )
-qDC by charge conservation, and that qCC ) -qCC ) 0 because
an atom has a zero charge interchange with itself. Then, by
taking qAB () -qBA) as the only independent charge variable,
map the VB variational coefficients {c1

(3), c2
(3), c3

(3)} into qAB as
follows:

c2
(3)(qAB))-c3

(3)(qAB))
qAB

√2
(27)

where c1
(3)(qAB) can be obtained from c2

(3)(qAB) and c3
(3)(qAB) via

the normalization condition, eq 14 [See eq A1, Appendix].
This map imposes a constraint on the VB coefficients that

along with the normalization condition leaves only one inde-
pendent variable in the VB Model 3, as is the case of the CE
model for neutral diatomic molecules.

• Approximation II. Neglect all the terms having SAB
n (R) with

n g 1 in the VB normalization condition.
• Approximation III. To all the two-center VB atomic

integrals 〈φA|Ô|φB〉 (A * B) in eq 16 that do not occur in CE
energy expressions, eqs 5 and 6, apply the Mulliken Ap-
proximation:33

〈φA|Ô|φB〉) 1
2

[〈φA|Ô|φA〉+ 〈φB|Ô|φB〉]SAB (28)

where Ô is the operator in the integral. This approximation
applies to: hAB

AB, JAB
AA/JAB

BB and KAB, for which Ô ) Ĥ ) T̂ + V̂A

+ V̂B, Ô(1) ) ĴA/B(1) ) ∫dr2|φA/B(r2)|2r12
-1, and Ô(1) )

∫dr2φB(r2)φA(r2)r12
-1, respectively, so that,

hAB
AB ) 1

2
(hAA + hBB+VAA

B +VBB
A )SAB;

JAB
BB ) 1

2
(JBB + JAB)SAB; JAB

AA ) 1
2

(JAA + JAB)SAB;

KAB )
1
2[JAB +

1
2

(JAA + JBB)]SAB
2 (Approx. III) (29)

Notice that for KAB, this approximation should be applied thrice
to obtain the above result.

• Approximation IV. In all the off-diagonal VB energy matrix
elements and in the Mulliken population expressions, eq 22,

approximate the denominator √1+SAB
2 (R) to a constant “aver-

age” value 2SAB
0

√1+ SAB
2 (R)) 2SAB

0 (Approx. IV) (30)

where SAB
0 is a value of the overlap SAB(R) at a chosen separation

R ) R0. SAB
0 is an adjustable parameter whose specific value is

determined below.
• Approximation V. Neglect all the terms having SAB

n (R) with
n g 2 in the rest of the VB expressions.

• Approximation VI. Neglect all the terms having qCD
n (C,

D ) A, B) with n g 3 in all the resulting VB expressions so
that they become quadratic functions of qCD at most.

This approximation is acceptable when the intramolecular
charge transfers are relatively low: |qCD| much smaller than 1ej,
as is the case during most applications of the CE model.

• Approximation VII. Define the VB/GCE atomic charges
QA and QB in the resulting VB expressions as follows:

QA ) ∑
C)A

B

qAC ) qAA + qAB; QB ) ∑
C)A

B

qBC ) qBB + qBA

(31)

where the skew-symmetric matrix q correctly enforces that QA

+ QB ) 0.
Like with Rules I-V, the Approximations I-VII for neutral

diatomic molecules have been presented in a systematic and
abstract way because in that form they can be easily extended
to more complex cases with polyatomic molecules. For instance,
in a triatomic molecule ABC, a 3 × 3 skew-symmetric matrix
q is employed from which QA ) qAA + qAB + qAC.

The application of Approximations I-VII to the VB Model
3 energy EVB

(3) , eq 14, to obtain the VB/GCE model energy
EAB

VB/GCE is lengthy and is therefore given in the Appendix. As
shown there, EVB

(3) is transformed into the VB/GCE energy
EAB

VB/GCE: EVB
(3) ) EAB

VB/GCE, where

EAB
VB/GCE(QA))AVB/GCE +BVB/GCEQA +CVB/GCEQA

2 (32)

with

AVB/GCE )EA0 +EB0 +F11
(3)(R))H11

(3);

BVB/GCE ) (�A* - �B*)SjAB ) √2(H12
(3) -H13

(3));

CVB/GCE ) ηA
0 + ηB

0 - JAB )
1
2

(H22
(3) +H33

(3) - 2H11
(3)) (33)

where SjAB(R) ) SAB(R)/SAB
0 is a generalized overlap; an

equivalent form of EAB
VB/GCE(QA), eq 32, akin to eq 3, is,

EAB
VB/GCE(QA, QB))EA

0 +EB
0 +F11

(3) + �A*SjABQA +

�B*SjABQB + ηA
0 QA

2 + ηB
0 QB

2 + JABQAQB (34)

Similarly, with Approximations I-VII, the VB Model 3
Mulliken number of electrons NA

(Mull) and charge QA
(Mull) become

(See Appendix):

NA
(Mull) ) 1-QASjAB; QA

(Mull) )QASjAB (ZA
eff ) + 1) (35)

The energy expression in eq 34 is equivalent to the postulated
PE-CC-QVB2 energy expression from ref 27; thus, the present
derivation provides a rigorous theoretical justification for the
hypothesized PE-CC-QVB2 model.

Conceptually, the contribution of each approximation to
obtain the above results is as follows: The map in Ap-
proximation I reduces the two independent VB Model 3
coefficients to only one independent variable (qAB) as is the
case of the CE model for diatomic molecules. Approximation
III permits expressing many two-center atomic integrals
〈φA|Ô|φB〉 in terms of one-center integrals 〈φA|Ô|φA〉 and
〈φB|Ô|φB〉 and the overlap SAB(R). That splitting allows
deconstructing the VB Model 3 energy into separated atomic
terms that can be reconstructed into the VB/GCE energy by
the successive approximations. Approximations II, IV, and
V further simplify the VB Model 3 expressions toward a CE
format. Approximation VI transforms the VB Model 3 energy
into a quadratic function of a charge variable (qAB) that
resembles the CE energy. Finally, Approximation VII defines
the VB/GCE charges and brings about the final EAB

VB/GCE

expression. It is worth noticing that the independent AVB/GCE

and quadratic CVB/GCE coefficients in EAB
VB/GCE come from the

diagonal VB Model 3 energy matrix elements, whereas the
linear coefficient BVB/GCE comes from the off-diagonal VB
ones. The treatment of the atomic overlap integrals via
Approximations II and V in this derivation is equivalent to
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treatments employed in semiempirical methods;33 the same
treatment of the overlap integrals was also employed in a
previous CE investigation with the VB theory13 and provided
meaningful results. In some semiempirical methods, and in
this derivation, overlap integrals are dropped from some
expressions (e.g., in the normalization) because such a neglect
does not seriously affect the final results; conversely, overlap
integrals are retained in other expressions (e.g., in some
atomic integrals of the energy) because if neglected, they
can seriously affect the final results. For instance, in the
complete neglect of differential overlap (CNDO) method,33

overlap integrals SAB are neglected in the normalization
condition, but they are retained in the resonance integrals
HAB ) (1/2) (�A + �B)SAB of the energy and the Fock matrix;
notice that those retained CNDO resonance integrals are
equivalent to the first retained integral in eq 29 in this
derivation, and that all those integrals are evaluated with the
Mulliken Approximation prescribed in Approximation III.
Also, in the Hückel method,33 overlap integrals SAB are
neglected in the normalization condition, whereas resonance
integrals � ∝ SAB are retained in the energy and other
expressions. Here, overlap integrals are neglected in the
normalization condition, but they are retained in some atomic
integrals in eq 29 occurring in the energy and other
expressions because, in the present scheme, those retained
integrals become analogous to the retained integrals in CNDO
and Hückel.

The CE energy EAB
CE, eqs 5 and 6, is a subcase of the VB/

GCE energy EAB
VB/GCE, eqs 32 and 33, that is obtained from the

latter if two more approximations are applied:
• Approximation VIII. Neglect the interaction function F11

(3)(R),
F11

(3)(R) ≈ 0.
• Approximation IX. Assume that SjAB(R) ) SAB(R)/SAB

0 ) 1
at all separations R.

Approximation VIII is plausible because the neutral atoms’
interaction F11

(3)(R) is weak. Approximation IX is only exact
at an R0 where SAB(R0) ) SAB

0 . Therefore, a convenient
selection of the VB/GCE parameter SAB

0 is the atomic overlap
at the equilibrium bond distance REq., SAB

0 ) SAB(REq.), because
that choice makes EAB

VB/GCE, eq 32, identical to EAB
CE, eq 5, at

a separation where the latter behaves correctly; that selection
for SAB

0 will be adopted henceforth. Under those conditions,

eq 35 finally elucidates that the CE charge QA is the Mulliken
charge QA

(Mull) of the underlying VB Model 3 subject to
Approximations I-IX. Also, the factor JAB of the Coulomb
interaction: JABQAQB) - JABQA

2 in eqs 32-34 is no longer
an ad-hoc term because it has been derived from the
interaction functions Fii

(3)(R) via a subtle cancelation of terms
in eq A6 (See Appendix).

EAB
VB/GCE exhibits two improvements over EAB

CE. First, the neutral
atoms’ energy AVB/GCE ) EA0 + EB0 + F11

(3)(R) correctly includes
the neutral atoms’ interaction F11

(3)(R), which is absent in ACE )
EA0 + EB0; that inclusion makes EAB

VB/GCE more realistic than EAB
CE

but does not affect the charge description because both
AVB/GCEand ACE are the independent coefficients in their energy
expressions. Second, and more importantly, BVB/GCE ) (�A* -
�B*)SjAB contains the extra term SjAB(R) ) SAB(R)/SAB

0 that
modulates the electronegativity difference during charge trans-
fers. The optimal VB/GCE charge QjA () -Qj B) from EAB

VB/GCE,
eq 32, is,

QjA )-Qj B )- BVB/GCE

2CVB/GCE

)
[�B

0 - �A
0 +∫ V̂B(r)fA(r)dr -∫ V̂A(r)fB(r)dr]SjAB(R)

2[ηA
0 + ηB

0 - JAB
CE(RAB)]

(36)

where the charge transfer leading to those optimal charges
is portrayed as driven by the electronegativity difference in
BVB/GCE ) (�A* - �B*)SjAB. Equation 36 correctly predicts that
Qj A ) -Qj B ) 0 at R f ∞ because in that case SjAB f 0. This
correct asymptotic behavior arises from the vanishing of
BVB/GCE at large R; BVB/GCE inherits that asymptotic behavior
from its built-in, off-diagonal VB energy matrix elements,
eq 33 (See Appendix).

The correct behavior of the VB/GCE model is further
illustrated by two numerical tests of the VB/GCE atomic
charges in HF(g) shown in Figures 1 and 2. Like in seminal
CE investigations,2,14 the present tests concentrate on the
charge description of the VB/GCE model. While a specific
VB/GCE parametrization of EAB

VB/GCE is not available yet, it
suffices herein to borrow the CE parameters of Goddard and
Rappé,2 and of Itskowitz and Berkowitz14 (See Table 1) and
obtain the VB/GCE I and II parametrizations, respectively.
In both cases, the spatial atomic orbitals {φA(r)} are s-type
Slater orbitals φA(r) ) NnA

rnA1 exp(-�Ar) with normalization
constants NnA

, orbital coefficients �A, and primary quantum
numbers nH ) 1 and nF ) 2. For VB/GCE I and CE
calculations, the iterative procedure for the H atom in ref 2
is preserved. Figure 1 shows the F atom charge in HF(g) as
a function of the bond distance RHF predicted by two quantum
methods: the electrostatic potential (ESP) fitting23-25 and the
Mulliken21,22 charges from generalized valence-bond (1/2)36

[GVB(1/2)]/6-31G** calculations, and by three classical
methods: Goddard-Rappé CE, eq 7, and VB/GCE I and II

Figure 2. The same as in Figure 1 except that for VB/GCE I and II,
their VB Model 3 Mulliken charges, eq 35, are shown instead.

TABLE 1: Parameters for Two Implementations of the
Valence-Bond Generalized Charge Equilibration (VB/GCE)
Model: VB/GCE I and II

VB/GCE I Parametersa VB/GCE II Parametersb

atom �A
0 (eV) ηA

0 (eV) �A (a.u.) �A
0 (eV) ηA

0 (eV) �A (a.u.)

F 10.874 7.474 0.9206 10.41 eq 18 0.9206
H 4.528 6.9452 1.0698 7.180 7.49 1.6020

a Ref 2. b Ref 14.
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(Qj F), eq 36, charges. Figure 2 shows the same as Figure 1
but for VB/GCE I and II, their VB Model 3 Mulliken charges
Qj F

(Mull), eq 35, are plotted instead. The GVB(1/2)/6-31G**
calculations were performed with the program Jaguar 4.2
(Jaguar 4.2, Schrödinger, Inc., Portland, Oregon, 2000). It
is well-known that there are different ways to calculate
charges in ab initio methods (via ESP, Mulliken, Löwdin,
Coulson, etc., analyses) and those charges often disagree
considerably with one another. For that reason, only two
relevant types of charge (ESP and Mulliken) are used in these
tests since it would be impossible to match a given VB/GCE
or CE charge under a particular parametrization with all the
greatly differing ab initio charges (ESP, Mulliken, Löwdin,
Coulson, etc.) in a larger set. The ESP fitting charges are
specially selected for these tests because those charges aim
at reproducing the electrostatic potential of a molecule; that
direct electrostatic definition of the ESP charges is compa-
rable to the electrostatic description of the VB/GCE and CE
models; the present ESP fitting level matches the total charge
and dipole moment of HF(g). The ab initio Mulliken charges
are also used because that type of charge arise in the
theoretical definition of the VB/GCE and CE charges; in fact,
the provided parametrizations try to make the Mulliken-
related VB/GCE and CE charges be as close as possible to
the ESP ones. Other types of charges (Löwdin, Coulson, etc.)
do not have a direct physical (like ESP) or theoretical (like
Mulliken) connection with the VB/GCE and CE models and
are therefore less significant in these preliminary tests; those
additional charges will be tested in a future publication.
Previous CE publications13,27 considered similar number and
types of charges as the ones used here. Inspection of Figures
1 and 2 reveals that the CE model satisfactorily predicts the
F atom charge around the HF(g) equilibrium bond distance
[Qj F ) 0.462 (CE2), 0.415 (experimental37), at REq. HF )
0.9171Å38) but fails at dissociation; contrastingly, all of the
other methods behave acceptably at dissociation. The VB/
GCE I and II original and Mulliken charges agree satisfac-
torily with the GVB(1/2)/6-31G** ESP fitting charges over
all separations RHF, with the VB/GCE I Mulliken charges
exhibiting the best agreement. Equation 36 was also obtained
from the hypothesized PE-CC-QVB2 model27 and tested in
the dissociations of LiH(g)

27 and NaCl(g).28 In both cases, eq
36 also provided satisfactory charge predictions at dissocia-
tion when compared with the Mulliken charges at the GVB(1/
2)/6-31G (LiH(g)) and the complete active space (CAS)/3-
21G levels (NaCl(g)). All of those tests demonstrate the
adequacy of the derived VB/GCE model to predict atomic
charges. Tests with other diatomic molecules, and involving
additional ab initio charges and other properties, will be
presented in a future publication.

C. Additional VB/GCE Models for Neutral Diatomic
Molecules. Approximations I-VII on VB Model 3 lead to the
VB/GCE model for neutral diatomic molecules. However, it is
instructive to consider some modifications in the above ap-
proximations to obtain additional VB/GCE models. A critical
step in the previous derivations is the map in Approximation I
that reduces the two independent VB coefficients to only one
independent variable (qAB). Obviously, various 2-to-1 maps of
that kind can be devised but the following four prove fruitful
in subsequent discussions:

Map 2-: c2
(3) )-c3

(3) )
qAB

√2
; c1

(3) ) √1- qAB
2 ;

Map 2′-: c2
(3) )-c3

(3) )�1- qAB
2

2
; c1

(3) ) qAB;

Map 2+: c2
(3) ) c3

(3) )
qAB

√2
; c1

(3) ) √1- qAB
2 ;

Map 2′+: c2
(3) ) c3

(3) )�1- qAB
2

2
; c1

(3) ) qAB (37)

where the c1
(3)(qAB) are obtained via the normalization condition

under Approximation II; Map 2- is the same as that in
Approximation I. By applying each of the above maps along
with Approximations II-VII to the VB Model 3 energy, four
different VB/GCE energy expressions are obtained:

EAB
VB/GCE(2-)(QA))AVB/GCE +BVB/GCEQA +CVB/GCEQA

2;

EAB
VB/GCE(2′-)(QA))AVB/GCE +BVB/GCEQA +CVB/GCE(1-QA

2);

EAB
VB/GCE(2+)(QA))AVB/GCE + B̃VB/GCEQA +CVB/GCEQA

2;

EAB
VB/GCE(2′+)(QA))AVB/GCE + B̃VB/GCEQA +CVB/GCE(1-QA

2) (38)

where the new coefficient B̃VB/GCE is as follows:

B̃VB/GCE )-2(�̃A* + �̃B*)SjAB; �̃A/B* ) �A/B
0 +

ηA/B
0

2
-

∫ [V̂B/A(r1)+∫ FB(r2)dr2

4r12
]fA/B(r1)dr1 -

1
2R

(39)

�̃A/B* can be formally interpreted as an unconventional perturbed
electronegativity in analogy with �A/B

* in BVB/GCE. EAB
VB/GCE(2-)(QA)

is identical to EAB
VB/GCE(QA), eq 32, and is the only model in eq 38

that contains the CE model as a subcase. A similar treatment to
the charges renders

QA
(Mull) )QASjAB (Maps 2- and 2′-);

QA
(Mull) )-2QASjAB (Maps 2+ and 2′+) (40)

where the relationship between QA
(Mull) and QA with Maps 2-

and 2′- is identical to that of the previous VB/GCE model, eq
35. The optimization of the above energies (dEAB

VB/GCE(2-)(QA)/
dQA ) 0, etc.) provides the optimal charges:

Q̄A
(2-) )-Q̄A

(2′-) )- BVB/GCE

2CVB/GCE
;

Q̄A
(2+) )-Q̄A

(2′+) )- B̃VB/GCE

2CVB/GCE
(41)

whose corresponding optimal energies [EjAB
VB/GCE(2-) )

EAB
VB/GCE(2-)(QjA) etc.] are

EjAB
VB⁄GCE(2-) )AVB/GCE - BVB/GCE 2

4CVB/GCE
;

EjAB
VB/GCE(2′-) )AVB/GCE +CVB/GCE + BVB/GCE 2

4CVB/GCE
;

EjAB
VB/GCE(2+) )AVB/GCE - B̃VB/GCE 2

4CVB/GCE
;

EjAB
VB/GCE(2′+) )AVB/GCE +CVB/GCE + B̃VB/GCE 2

4CVB/GCE
(42)

Maps 2+ and 2′+ bring about some curious features in their
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corresponding energy and charge expressions. For instance,
unlike BCE and BVB/GCE, B̃VB/GCE does not contain an electrone-
gativity difference �̃A* - �̃B* but a sum �̃A* + �̃B*, a term that
impedes describing charge transfers as driven by electronegativiy
differences. Moreover, the unconventional perturbed electrone-
gativity �̃A/B* , eq 39, contains unusual environment-perturbing
terms and even a hardness term: (1/2)ηA/B

0 ; the latter’s presence
in �̃A/B* prevents the traditional separation of electronegativities
and hardnesses into the linear and quadratic coefficients of the
energy, respectively. Finally, the relationship between QA

(Mull)

and QA with Maps 2+ and 2′+, eq 40, is less intuitive than
that with Maps 2- and 2′- due to the -2 factor; however,
that odd negative sign can be avoided by redefining Q′A )
-QA so that QA

(Mull) ) 2Q′ASjAB, and by introducing B̃VB/GCE′)
-B̃VB/GCE so that EAB

VB/GCE(2()(Q′A) remains analogous to
EAB

VB/GCE(2() (QA). The previous analysis demonstrates that even
a slight modification in Approximation I can lead to uncon-
ventional VB/GCE models. All those models are further
analyzed in the next section.

D. Relationship between the VB/GCE Models and the
Original VB Models. The CE model deals directly with energy
and charge descriptions while circumventing the use of wave
functions; consequently, the VB/GCE energy and charge
expressions have received most of the attention thus far.
However, it is time to investigate more closely the relationship
between those VB/GCE expressions and their implicit VB wave
functions. In that context, it is important to determine how the
VB/GCE procedure, energies and charges relate to the varia-
tional procedure, energies and charges of their original VB
model. Starting with the VB Model 3 wave function ΨVB

(3) , eq
13, Maps 2- and 2′- (2+ and 2′+), eq 37, impose the
constraint: c2

(3) ) - c3
(3) (c2

(3) ) c3
(3)) on the VB coefficients and

thus contracts a three-state VB wave function ΨVB
(3) , into a two-

state VB wave function ΨVB
(2-) (ΨVB

(2+)) of the VB Model 2- (2+),
eq 24,

ΨVB
(3) ) c1

(3)Ψ1
(3) + c2

(3)Ψ2
(3) + c3

(3)Ψ3
(3)

)ΨVB
(2-) ) c1

(2-)Ψ1
(2-) + c2

(2-)Ψ2
(2-) (Maps 2- and 2'-)

)ΨVB
(2+) ) c1

(2+)Ψ1
(2+) + c2

(2+)Ψ2
(2+) (Maps 2+ and 2'+)

(43)

where

c1
(2-) ) c1

(2+) ) c1
(3); c2

(2-) ) √2(1- SAB
2)c2

(3);

c2
(2+) ) √2(1+ SAB

2) (44)

The constraint of Maps 2- and 2′- (2+ and 2′+) also changes
the VB Model 3 energy EVB

(3) , eq 14, into the VB Model 2-
(2+) energy EVB

(2-) (EVB
(2+))

EVB
(2() ) c1

(2()2H11
(2() + c2

(2()2H22
(2() + 2c1

(2()c2
(2()H12

(2() (45)

whose matrix elements under Approximations II-VII are as
follows:

H11
(2() )H11

(3) )AVB/GCE;

H22
(2() ) 1

2
(H22

(3) +H33
(3)))AVB/GCE +CVB/GCE;

H12
(2() )

H12
(3) (H13

(3)

√2
; H12

(2-) ) BVB/GCE

2
; H12

(2+) ) B̃VB/GCE

2

(46)

Similarly, the normalization condition of ΨVB
(2-) (ΨVB

(2+)) with

Approximation II is [cf. eq 25]

c1
(2()2 + c2

(2()2 ) 1; S11
(2() ) S22

(2() ) 1; S12
(2() ) 0 (47)

The coefficients c1
(2() and c2

(2() can be expressed in terms of the
VB/GCE charge QA via eqs 31, 37, and 44:

Map 2- and 2+ : c1
(2() ) √1-QA

2 ;

c2
(2() )QA (Approx. II-VII)

Map 2′- and 2′+ : c1
(2() )QA;

c2
(2() ) √1-QA

2 (Approx. II-VII) (48)

The optimal coefficients c1
(2() and c2

(2() and energies EVB
(2() of

the VB Models 2( are naturally obtained from their VB
eigenvector equations that under Approximations I-VII are as
follows:

(H11
(2() -Ei

(2() H12
(2()

H12
(2() H22

(2() -Ei
(2() )(c1i

(2()

c2i
(2() )) 0 (49)

each having two energy eigenvalues E1/2
(2() ) EVB(

(2()

EVB(
(2() )

(H11
(2() +H22

(2())

2
(

(H11
(2() -H22

(2())

2 �1+
4H12

(2()2

(H22
(2() -H11

(2())2

(50)

where H22
(2() - H11

(2() ) CVB/GCE > 0; notice that the ( subscript
of the two eigenvalues EVB(

(2() correlates with the ( of the sum
above; the ((2) superscripts only denote the VB Models 2(.
From eq 46, it can be proven that |H12

(2()| , |H22
(2() - H11

(2()|; under
that condition, the eigenvalues EVB(

(2() in eq 50 are (EVB+
(2() < EVB-

(2() )

EVB+
(2() )H11

(2() -
H12

(2()2

(H22
(2() -H11

(2())
; (ground state)

EVB-
(2() )H22

(2() +
H12

(2()2

(H22
(2() -H11

(2())
(excited state) (51)

By expressing the VB matrix elements in eq 51 in terms of the
VB/GCE coefficients: AVB/GCE, BVB/GCE, B̃VB/GCE, and CVB/GCE,
eq 46, the eigenvalues EVB+

(2() are EVB-
(2() turn out to be identical to

the VB/CGE optimal energies in eq 42

EVB+
(2-) )AVB/GCE - BVB/GCE 2

4CVB/GCE
)EjAB

VB/GCE(2-);

EVB-
(2-) )AVB/GCE +CVB/GCE + BVB/GCE 2

4CVB/GCE
)EjAB

VB/GCE(2′-);

EVB+
(2+) )AVB/GCE - B̃VB/GCE 2

4CVB/GCE
)EjAB

VB/GCE(2+);

EVB-
(2+) )AVB/GCE +CVB/GCE + B̃VB/GCE 2

4CVB/GCE
)EjAB

VB/GCE(2′+)

(52)

Similarly, the eigenvectors in eq 49 with |H12
(2()| , |H22

(2() - H11
(2()|

are as follows:

6012 J. Phys. Chem. A, Vol. 113, No. 20, 2009 Morales



c1+
(2() ) √1- c2+

(2()2; (ground state)

c2+
(2() )-

H12
(2()

(H22
(2() -H11

(2())
; (ground state)

c1-
(2() ) +

H12
(2()

(H22
(2() -H11

(2())
; (excited state)

c2-
(2() ) √1- c1-

(2()2 (excited state) (53)

The optimal VB charges can be obtained from the above VB
coefficients via eq 48

Q̄A+
(2()(ground state))-Q̄A-

(2()(excited state)

)-
H12

(2()

(H22
(2() -H11

(2())
(54)

By expressing the VB matrix elements in eq 54 in terms of the
VB/GCE coefficients, eq 46, the VB charges QjA+

(2() and QjA-
(2()

turn out to be identical to the VB/CGE optimal energies in eq
41

Q̄A+
(2-) (ground state))-Q̄A-

(2-) (excited state))- BVB/GCE

2CVB/GCE
;

Q̄A+
(2+) (ground state))-Q̄A-

(2+) (excited state))- B̃VB/GCE

2CVB/GCE

(55)

The results in eqs 52-55 demonstrate the equivalence between
the VB/GCE models and their underlying VB Models 2( under
Approximations I-VII, including the equivalence between the
VB/GCE energy and charge optimizations and the VB Model
2( eigenvalue/eigenvector procedures under the same approxi-
mations.

The previous analysis elucidates some additional details of
the VB/GCE 2- to 2′+ and CE models in relation to their parent
VB models. Despite their outwardly classical appearance, the
VB/GCE 2- to 2′+ and CE models certainly involve the wave
functions ΨVB

(2-) and ΨVB
(2+) that nonetheless remain implicit

during the VB/GCE energy and charge optimization procedures.
The VB/GCE 2- and 2′- (2+ and 2′+) models involve the
two-state VB wave function ΨVB

(2-) (ΨVB
(2+)) that through either

the VB/GCE or the VB procedures provides the optimal
energies: EVB+

(2-) < EVB-
(2-) (EVB+

(2+) < EVB-
(2+) ), which are the energies

of the ground and first-excited states of the model, and the
optimal charges: QjA+

(2-) ) -QjA-
(2-) (QjA+

(2+) ) - QjA-
(2+)), eqs 54-55,

which are the charges of the ground and first-excited states.
Equations 43, 48, and 55 show that the VB/GCE 2- and 2′-
(2+ and 2′+) models predict dissociations into uncharged
fragments, QjA+

(2() ) QjA-
(2() ) 0 in terms of the asymptotic ground

Ψ1
(2() ) Ψ1

(3) and first-excited Ψ2
(2-) (Ψ2

(2+)) states, eq 24. That
result is acceptable for model ground states (and coincides with
the VB Model 3 prediction in Section 2.A), but it is less
acceptable for excited states because it describes them with the
nongenuine VB wave function Ψ2

(2-) (Ψ2
(2+)), eq 24, instead of

the genuine ones Ψ2
(3) (Ionic I A+ B-) and Ψ3

(3) (Ionic II A-

B+), eq 12. That situation and the fact that the excited-state
charges are the negative of their ground-state counterparts
indicate that the excited-state description by the VB Model 2-
(2+) is less satisfactory. Nevertheless, the VB/GCE 2- model
implies the wave function ΨVB

(2-) that corresponds to the ground-
state of the model molecule AB and that leads to a satisfactory

description of the molecule dissociation into neutral species,
QjA+

(2-) ) 0, in terms of an acceptable asymptotic ground state:
Ψ1

(2-))Ψ1
(3). The traditional CE model, as a subcase of the

previous model, also implies the wave function ΨVB
(2-) but can

no longer provide a correct dissociation description due to the
restriction imposed on the atomic overlap by Approximation
IX.

Conclusions

The present work, Paper I, develops the VB part of a new
VB/CS approach to the CE model, whereas the next, Paper II,
will develop the corresponding CS part. The main result in this
work is the rigorous derivation of a classical VB/GCE model
for neutral diatomic molecules from a quantum VB model; that
VB/GCE model contains the traditional CE model as a subcase.
The VB/GCE model exhibits some improvements over its CE
counterpart, the most important being its satisfactory description
of charge-transfer processes at dissociation as illustrated with
HF(g) LiH(g) and NaCl(g) (Section 2.B). The VB/GCE model
derivation starts with the two-electron, three-state, VB Model
3 defined by five rules (Rules I-V; Section 2.A). The VB/GCE
model is obtained from the VB Model 3 by sequentially applying
to the latter seven approximations (Approximations I-VII;
Section 2.B), whereas the traditional CE model is obtained from
the VB/GCE model by applying two additional approximations
(Approximations VIII and IX; Section 2.B). The previous
procedure establishes a Q/C connection between the quantum-
mechanical description of the VB Model 3 and the classical-
electrostatics description of the VB/GCE and CE models.
Through that Q/C connection, the CE charges and the CE
modulating factor JAB

CE in the Coulomb interactions are finally
elucidated in terms of the VB Model 3 Mulliken charges and
the atomic interactions, respectively. By generalizing the VB
coefficients map in Approximation I into the Maps 2-, 2′-,
2+, and 2′+, the additional VB/GCE 2- to 2′+ models are
obtained (Section 2.C), where the VB/GCE 2- model is
identical to the previous VB/GCE model containing the CE
subcase. Some of the additional models (e.g., VB/GCE 2+ and
2′+) exhibit unconventional features, particularly in the energy
coefficients traditionally associated with the electronegativity.
An analysis of the VB/GCE 2- to 2′+ and CE models (Section
2.D) proves that despite their classical appearance, those models
involve two-state VB wave functions, and that their VB/GCE
optimization procedures are equivalent to the VB eigenvector
equations of their underlying VB models (i.e., the VB Models
2- and 2+). The VB/GCE 2- to 2′+ models predict optimal
charges for both the ground and excited states of their corre-
sponding VB models, although the excited-state descriptions
seem less satisfactory. The VB/GCE 2- model and its CE
subcase imply a two-state VB wave function and a charge
description that correspond to the ground state. The presented
VB part of a VB/CS approach to the CE mode dealt with neutral
diatomic molecules, but it is not restricted to those types of
systems. In fact, the VB/CS treatment of cases involving
polyatomic molecules will be presented in later papers in this
series. The Q/C connection found between the quantum-
mechanical description of the VB models and the classical-
electrostatics description of the VB/GCE and CE models will
be further elaborated with the quasi-classical30-32 VB CS sets
to be introduced in Paper II. Paper II will be submitted for
publication soon.

Appendix

Derivation of the VB/GCE Energy and Charges. The VB/
GCE energy EAB

VB/GCE, eqs 32-34 is obtained from the VB Model
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3 energy EVB
(3) , eq 14, via Approximations I-VII as follows. First,

Approximations I and II change the VB Model 3 normalization
condition, eq 14, into

1) c1
2(qAB)+ c2

2(qAB)+ c3
2(qAB)) c1

2(qAB)+ qAB
2;

c1(qAB)) √1- qAB
2 (Approx. I and II) (A1)

from which c1(qAB) is obtained. EVB
(3) , eq 14, can be split into

diagonal EVB
On and off-diagonal EVB

Off parts that collect the diagonal
and off-diagonal VB energy matrix elements, respectively:

EVB
(3) (c1

(3), c2
(3), c3

(3)))EVB
On +EVB

Off;

EVB
On (c1

(3), c2
(3), c3

(3))) c1
(3)2H11

(3) + c2
(3)2H22

(3) + c3
(3)2H22

(3);

EVB
Off(c1

(3), c2
(3), c3

(3))) 2c1
(3)c2

(3)H12
(3) + 2c1

(3)c3
(3)H13

(3) + 2c2
(3)c3

(3)H23
(3)

(A2)

with the map in Approximation I, EVB
On and EVB

Off become

EVB
On (qAB)) c1

(3)2(qAB)H11
(3) +

qAB
2

2
(H22

(3) +H33
(3));

EVB
Off(qAB)) 2c1

(3)(qAB)
qAB

√2
(H12

(3) -H13
(3))+

qAB
2H23

(3) (Approx. I) (A3)

Then, Approximations III-V change F11
(3)(R), H11

(3), H12
(3), H13

(3), and
H23

(3) into

F11
(3)(R)) JAB +VAA

B +VBB
A + 1

R
;

H11
(3) )EA

0 +EB
0 +F11

(3)(R);

H23
(3) ) 0;

H12
(3) ) 1

2√2
(hAA + 3hBB +VAA

B + 3VBB
A + JBB + JAB +

2
R)SjAB;

H13
(3) ) 1

2√2
(hBB + 3hAA +VBB

A + 3VAA
B + JAA + JAB +

2
R)SjAB

(Approx. III-V) (A4)

where ZA
eff ) ZB

eff ) +1; SjAB ) SAB(R)/SAB
0 is a generalized

overlap. Approximations III-V do not change F22
(3)(R), F33

(3)(R),
H22

(3), and H33
(3). With the above changes, EVB

On becomes

EVB
On ) (1- qAB

2)H11
(3) +

qAB
2

2
(H22

(3) +H33
(3))

)H11
(3) +

qAB
2

2
(H22

(3) +H33
(3) - 2H11

(3))

)EA
0 +EB

0 +F11
(3)(R)+ [IPA -EAB + IPB -EAA +

F22
(3)(R)+F33

(3)(R)- 2F11
(3)(R)]

qAB
2

2

)EA
0 +EB

0 +F11
(3)(R)+ (ηA

0 + ηB
0 - JAB)qAB

2

)AVB/GCE +CVB/GCEqAB
2 (Approx. I-V) (A5)

where

F22
(3)(R)+F33

(3)(R)

2
-F11

(3)(R))-JAB (Approx. III-V)

(A6)

has been used in the last line; notice the subtle cancelation of

terms in eq A6 that renders -JAB for the CE Coulomb
interaction -JABQA

2 ) JABQAQB in eq A10 below. Similarly,
EVB

Off becomes

EVB
Off ) 2c1(qAB)

qAB

√2
(H12

(3) -H13
(3))

) c1(qAB)
qAB

2
(-2hAA - 2VAA

B - JAA + 2hBB + 2VBB
A +

JBB)SjAB

) c1(qAB)
qAB

2
(IPA +EAA - 2VAA

B - IPB -EAB +

2VBB
A )SjAB

) c1(qAB)qAB(�A
0 -VAA

B - JAB - �B
0 +VBB

A +

JAB)SjAB (Approx. I-V) (A7)

where the term (JAB - JAB) ) 0 has been added in the last line.
By considering the charge density FA/B(r) and the Fukui
functions20 fA/B(r) ≈ FA/B

HOMO(r) ) FA/B(r) ) φA/B
2 (r) of the neutral

atom A/B, the integrals VAA
B and JAB, and the perturbed

electronegativity �A* become:

VAA
B ) 〈φA|V̂B|φA〉)∫ V̂B(r1)fA(r1)dr1;

JAB )∫∫ FB/A(r2)

r12
fA/B(r1)dr1dr2;

�A* ) �A
0 -VAA

B - JAB

) �A
0 -∫ [V̂B(r1)+∫ FB(r2)

r12
dr2]fA(r1)dr1 (A8)

with analogous expressions for VBB
A and �B*. With those last

expressions, EVB
Off, eq A7, becomes:

EVB
Off ) c1(qAB)qAB(�A* - �B*)SjAB

) c1(qAB)qABBVB/GCE (Approx. I-V) (A9)

By adding EVB
On , eq A5, and EVB

Off, eq A9, into EVB
(3) ) EVB

On + EVB
Off,

eq A2, expanding c1(qAB) ) (1 - qAB
2)1/2 ) 1 - qAB

2/2 +..., eq
A1, in EVB

Off, and applying Approximations VI-VII, EVB
(3) finally

becomes EVB
(3) ) EAB

VB/GCE(QA), where (cf. eqs 32-34),

EAB
VB/GCE(QA))AVB/GCE +CVB/GCEqAB

2 +

qAB(1-
qAB

2

2
+ ...)BVB/GCE

)AVB/GCE +BVB/GCEQA +CVB/GCEQA
2

)EA
0 +EB

0 +F11
(3) + (�A*- �B*)SjABQA +

(ηA
0 + ηB

0 - JAB)QA
2

)EA
0 +EB

0 +F11
(3) + �A*SjABQA + �B*SjABQB +

ηA
0 QA

2 + ηB
0 QB

2 + JABQAQB (Approx. I-VII) (A10)

The VB/GCE charge QA ) (-QB) is obtained from the VB
Model 3 Mulliken charge description via Approximations I-VII
in a similar way. With Approximations I-V, the VB Model 3
Mulliken number of electrons NA

(Mull), eq 22, becomes:
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NA
(Mull) ) c1

(3)2 + 2c2
(3)2 - 2

√2
c1

(3)c2
(3)SjAB

) 1- 2

√2
c1

(3)c2
(3)SjAB

) 1- qAB√1- qAB
2 SjAB

) 1- qAB(1-
qAB

2

2
+ ...)SjAB (Approx. I-V)

(A11)

that with Approximations VI and VII readily renders,

NA
(Mull) ) 1-QASjAB;

QA
(Mull) ) 1-NA )QASjAB (Approx. I-VII) (A12)

where QA
(Mull) is the VB Model 3 Mulliken charge, eq 22 (cf.,

eq 35).
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